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The dynamical problem of a spherically symmetric wave collapse is investigated in the framework of
the nonlinear Schrodinger equation defined at the critical dimension. Collapsing solutions are shown to
remain self-similar for spatial coordinates below a cutoff radius only, and to exhibit at larger distances a
non-self-similar tail whose expression is explicitly computed. A rapid method used to study the time
behavior and the stability of the contraction rate associated with these singular solutions is also derived.

PACS number(s): 03.40.Kf, 03.65.Sq, 52.35.Mw

The collapse of strongly nonlinear wave packets has
been the topic of intense investigations in various areas of
physics [1-3]; this phenomenon consists in the self-
focusing and the ultimate blowup of multidimensional lo-
calized structures whenever their initial mass exceeds a
critical value. Such a singular behavior particularly ap-
pears within the solutions of the nonlinear Schrodinger
equation

i%lp_’_rl—dird—l d ¢+|¢|4/d¢:0 , (1)

or or
where Y(r,¢t) represents a scalar wave field, which will be
regarded as radially symmetric in a d-dimensional space.
The system (1) admits two main invariants, namely, the
mass integral N {y} = fg’ ||*r¢ " 1dr and the Hamiltoni-
an H, given by
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Equation (1) has well-known stationary solutions [1,4] of
the form ¥(r,z)=e"R,(r), where R,(r) is the real eigen-
function of Eq. (1) satisfying the differential equation

[—1+r1“d§7rd*1—a—+R3/d R,=0, 3)
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with the two boundary conditions Ry(r— «)—0 and
OR((0)/3r=0. From relations (2) and (3), it follows that
the soliton-type function R, verifies H (R,)=0 [4].

The collapsing states of Eq. (1) exhibit a diverging am-
plitude and a radial size f(z) that decreases to zero as ¢
tends to the henceforth called “collapse time” ¢,. Such
collapsing states are described in terms of solutions of the
following form:

P(r,t)=g(1) " 2$(£,T)expliT—ia(T)E* /4] .
argd(0,7)=0,
in which the new space and time coordinates are defined
by £=r/f(t)=r/g(7) and 7= [{f “*(u)du, where the
contraction rate g(7) and the time 7 must tend respec-
tively to zero and to infinity as t —t,; a(7) denotes the

positive function a (7)= — f,f = —g,./g. The substitution
(4) ensures the mass invariance, namely,
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N{yp}=N{¢}= [ ||’ 'dE, and the equation of evo-
lution for ¢ is
.3

.9 1-d 0 za—10_ 4/d 21y —
’ar¢+§ agg aé_qH—IqSI ¢+ (e&s—1)p=0, (5)
where &(7) is the function e(7)=—f3f,, /4=(a’+a,)/4.
The problem of the critical collapse therefore reduces to
the nonlinear eigenvalue problem consisting in determin-
ing the function &(7) in such a way that the solution
¢(&,7) satisfies the boundary conditions ¢(£,7)—0 and
9¢4(§,7)—0 for £— oo; the contraction rate f(¢) may in
turn be deduced from the differential equation
f3f + = —4¢€. Exactly self-similar solutions correspond to
functions ¢(&,7) which no longer depend on 7 for 7— oo,
which imposes &(7)—const as 7— . On the other
hand, it has been numerically observed that the solution
admits in this latter limit an exact self-similar core of the
form y—g ~?/?R y(£)exp(i7) within a bounded domain in
§&. From this result it follows that the characteristic
behavior &(7)—0 must hold for 7— o [ensuring then
a(7)—0 with |a_| <<a? in the same limit]. Among the
numerous contraction rates proposed in the literature
[5-12], the double-logarithmic scaling law

2m(t, —1) 12

f)= (6)
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was confirmed by many authors by means of various per-
turbation methods and verified by accurate numerical
computations [7—13]. The analytical procedures used in
order to derive (6) are based on an expansion of the solu-
tion ¢(&,7) into a central nonlinear core and an asymp-
totic tail vanishing for e—0. In this limit, this solution ¢
is standardly approximated by a so-called ‘‘quasi-self-
similar” state for which the function e(r) varies
sufficiently slowly for the approximation d¢/87=0 to be
valid. Within this approximation, Eq. (5) formally differs
from Eq. (3) by the extra contribution ££2 introduced by
the substitution (4). One may define accordingly the
turning point £ as £r=1/Ve; as the latter goes to
infinity for 7— o0, it lies in the spatial range where the
nonlinear term |$|*¢ can be neglected. Since Eq. (5)
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reduces to Eq. (3) in the domain £ <&, ¢ is expected to
be close to the solution R, in this range; conversely, ¢
will significantly differ from R, in the opposite domain.
For this reason the quasi-self-similar solution is sought
under the form ¢(&,e)=¢y(E,e)+¢r(£,€), where ¢q
represents the central core of the solution that tends to-
wards the exactly self-similar state R, as e—0, and dom-
inates over ¢, in the range £<&,. In the opposite
domain &> £, ¢ exponentially vanishes, and the tail ¢,
obeys a parabolic cylinder equation whose solution
evolves as follows:

e —7/(4V'e)

81/4§d/2+i/(2\/_e)

dr(&,€)=do(0,¢)

.‘/_ 2
X exp L—-zgi-f—irp (7

with the phase @={2In[1/(2Ve)]—1}/(4Ve)+7/4.
Expression (7) of ¢ has been normalized in accordance
with ¢y(£,€). Primarily derived on the basis of the form-
er semiclassical analysis, the twice logarithmic correction
in the blowup rate (6) is usually expected to result from
the approximated solution 2V e(7)=~a(7)=1/(Int) satis-
fying the following estimate:

e,=o(—e/T)=—Cexp— , (8)

_T_
2Ve
where C denotes a positive constant, which accounts for
the mass transfer between the core ¢, and the tail ¢;.
Until now, finding this latter relation has constituted the
major problem of a critical wave collapse, and often need-
ed to invoke unclear arguments, as reviewed in Ref. [9].
Besides, the solutions resulting from these previous
analytical investigations suffer from the important failure
consisting in the fact that they exhibit a spatial logarith-
mic divergence in the integral N {¢} when computing the
mass contribution associated with the tail (7). This diver-
gence is in obvious contradiction with the mass conserva-
tion N {1} =N {¢} for which the integral N remains finite
in space. As explained in Ref. [14], this failure follows
from the approximation 3,¢ =0 made by most of the au-
thors mentioned above. In [14], the spatial divergence of
N{¢} was shown to result from the fact that the quasi-
self-similar solution ¢(&,e) was supposed in the past to
extend in the whole space domain: as will be recalled fur-
ther on, such a solution is bounded from the top by a
cutoff radius beyond which a non-self-similar remaining
tail ensures the finiteness of the L? norm N{¢}. In what
follows, we detail this non-self-similar analysis applied to
a critical wave collapse: by retaining the time derivative
in Eq. (5), we precisely determine the non-self-similar
contributions of the solution ¢(&,7), which ensure a
bounded integral N{¢}. This analysis then allows us to
derive a rapid and rigorous method used to find the blow-
up rate (6) whose dynamical stability near the singularity
t, is demonstrated.

Let us first solve the nonstationary linear problem (5)
defined within the spatial range £=§&,, where §,= A&
denotes some arbitrary point in the long tail domain,
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A >>1 being a numerical constant of order unity. In the
following, the function &(7) is assumed to vary adiabati-
cally in time [i.e., logarithmically, as suggested by the es-
timate (8)]. For further technical convenience, we set

(1—d)/2
exp—i

2

€,X
32eVe

(2ve)'”?

X

(&, T)= &' (x,7'),

9

where x and 7' denote new space and time variables
defined by x=V2e'*¢ and 7= [72Ve(u)du=In[1/
g (7)], respectively. Substituting (9) into Eq. (5), we ob-
tain

2

1——=
Viex?

2
z'<’aT.<;>'+a,i<1)'+"T ¢'=0, (10)

where the inequalities |a|/a? <<1<<x?2 with @ <<1 have
been taken into account. In the space region
x>>x;=(2/V'e)!?, the last term in 2/(V'ex?) of Eq.
(10) is an infinitesimal correction whose time variation
with respect to 7' =~2V'er can be ignored. Equation (10)
has to be solved under the boundary conditions
&' (xo(7"), 7" )=¢7(xo(7'),7") and 09,¢'(x— 0,7")=0,
where x4(7')=V2¢!/4¢, and

dr(x)=Z (e)expi[x2/4—(Inx)/2VE] /N x /%1 ,
with
Z(e)=exp{ —m/4Ve+im/4+i[In(1/2Ve)—1]/(4Ve)}

respectively, represent the point £, and the function ¢
through the substitution (9) in the new frame defined by x
and 7. Laplace transforming Eq. (10) and returning to
the variables £ and 7, we find that the solution ¢(&,7) is
constituted of two main components, namely, ¢ =d¢;+ ¢y;.
These two contributions can be computed within the
basic approximation |a,| <<a?; the main part ¢ is given
by

3 -V
¢I(§,T):¢T(§’E) {“11’13_7- H(gmax-g) ’ (lla)
7 In°7

with

e 1 £

T=T e In [50 ] (11b)
and

VE—%+§[A2—1n(2A)~%] . (11¢)

In Eq. (11a), H(x) denotes the usual Heaviside function
[H(x)=1 for x >0] and §&,,,, is the cutoff radius defined
by

gmax:é-o/g(r) . (12)

The expression (11a) (whose similar form was recently de-
rived by Malkin in Ref. [9]) only remains valid within the
spatial range £;<<&<<& ... In the limit £—§& .,
¢1(&,7) is found to behave as follows:
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which is of order [g (7)]?/? as & reaches the cutoff £,,,,; in
the latter expression, I'(x) simply denotes the usual Euler
I function. Computed in the limit In[1/g(7)]~2Ver
>>1, the remaining part ¢; reads as

Z4(r)exp—i(Ve{In[1/g(7)]}£2/2)

R686
C(v+1)sin(vm/2)
bl €, T) ;‘T“ L
X {exp[ —vm/(2V'e)]}(e€3) Ydr(&€) , (13)
J
¢11(§,7’):£(“§‘/_;_/2_1) Z (T} 0+20}expi(Ve£?/2)+
o

where 8(£,7) represents the complex conjugate function
of the following one:

9(§’T)E [i’n-/z_-ln(“g/gma)()]_l
X exp{ — (i /2)[VEEHN(UE /Emay) H v+ )]} .

(14b)

In Egs. (14), the quantity u is defined by p=v"2¢'/%¢,,
and the time-dependent factors Z{(7) and Z5() are re-
spectively given by Z|(r)~—i(e!/*/V 4 )(rIn3r)~4°"2,
and by Z5(7)={In[1/g(7)]} " 'e*" 1 2expi(vmr/2). In the
domain £<§&_,,, the contribution ¢; dominates the
residual part ¢;; indeed, denoting by M{¢}

= gg‘“ltblzé‘d ~!d £ the mass transferred into the solution

at the point £=§;, one can see that
M{¢y}=a(r){In[1/g(7)]} % is negligible in front of
M{¢} =~(7?/2){InIn[1/g(7)]} "2 in the asymptotic limit
g(7)<<a(7) << 1. Thus relations (11) simply express that
the complete solution ¢ reduces to the quasi-self-similar
solution ¢(&,€) in the spatial range &£ <<&,,, only. In the
complementary domain §>§ .., ¢ is given by the 7-
dependent solution ¢;; whose spatial dependence ensures
the L? convergence of the whole solution, which solves
the spatial divergence problem that primarily occurred
throughout the quasi-self-similar analysis.

Let us now recover the contraction rate (6) by taking
the previous results into account: as originally intro-
duced by Fraiman in [7], the central core is searched for
under the form ¢4(&§,e)=c(e)Ry(§) where the amplitude
factor c(€) is assumed to be of order of unity for small
nonzero values of €. This function measures the
difference between exact solution ¢, defined for a finite
and the stationary state R,. Its functional dependence
can be derived by inserting the solution ¢=¢,+ ¢, into
Eq. (5) and by multiplying it by ¢ ~'&9/20(£/2R ;) /OE.
Taking then the real part of the space-integrated result
and using the relation H {R,} =0 indeed yield the follow-
ing estimate:

le|*4=1+¢eK , (15)

with K =(2N{£R,}/dN,) and with Ny=N{R,}. Ex-
pression (15), which depends linearly on ¢, is valid in the
domain € <<1 as 7— o0, and it describes the evolution of
the quantity |c |> with an accuracy of the order of
exp—[m/(4V'e)]. This linear dependence in ¢ justifies
the perturbative methods originally based on a conjec-
tured € expansion of the solution ¢ (as, e.g., in [9]). Since
the function |c(e)|? tends to unity as e—0 and since &,
tends to infinity in the same limit, one sees that for any
bounded domain of &, the solution ¢ decreases asymptoti-

g3 ’ (14a)

[

cally in time towards the core R,. It is now necessary to
derive the dynamical equation governing the time evolu-
tion of the function €; the latter may be deduced from the
previous functional dependence of |c|2. Following the
procedure used by Malkin in Ref. [9], we multiply Eq. (5)
by €77 1¢ and integrate the imaginary part of the result
from zero to £ to obtain the following continuity equa-
tion:

0
fog_a |¢(p,’r)|2pd ldp
2§d 1|¢(§; 7 )|2 aﬁ'g_arggb(é,ﬂ ). (16)

By inserting ¢ as defined by expression (7) into the right-
hand side of the continuity equation (16), one finds on the
one hand that the latter reduces to
—2|¢4(0,€)|%exp[ —7/(2V'e)] and thus no longer de-
pends on £ in the range £ >>1/Ve, which corresponds to
a uniform mass transfer in the tail domain. On the other
hand, in this limit £— oo, one can identify the left-hand
side (lhs) of (16) with 3,N {¢}; however, assuming a priori
N{¢}=N{¢p,} would be incorrect when only using the
approximation ¢=¢,+¢,;, since N{dr} spatially
diverges. The non-self-similar analysis performed above
allows us to clear up this problem; indeed, it can be
checked from the results (11) and (14) that the mass con-
tribution of the residual tail satisfies the inequality
J2 |81P€¢71dg << [ | $|%¢ ~'dg. Contributing to
the latter integral, the mass M{¢;} can in turn be
neglected as compared with the quantity

Jldot+drl?6? "'dE converging to N{do} in the limit
g(r)<<1. The mass N{¢} therefore reduces to
N{do)=Ic|®>N, as &,,,, tends to infinity. Applying this
result to Eq. (16), whose lhs reads as d,N{@,}, finally
leads to

Cexp[—m/(2Ve)], C 2R5(0) (17a)

g,=—Cexp[—m g)], C=——1—, a
N{£R,}

after taking the relations (15) and |¢y0,€)|?

=|c(€)|2R3(0) into account. Equation (17a) thus justifies
the key estimate (8) from which the contraction rate (6)
follows.

The tail solution (11), (13), and (14) together with the
cutoff (12) can be viewed as corresponding to the follow-
ing physical process: in the core region,
d(E,7)=c(e)Ry(£) evolves towards R,(£) with |c(g)l
continuously decreasing to unity as 7— oo; this property
is therefore associated to a mass input into the tail, from
which the behavior £, ,,— o follows. This mass transfer
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has now to be proved as corresponding to a stable
dynamical process; it accounts for investigating the sta-
bility problem of the contraction rate (6) for t —¢,, since
the twice logarithmic correction in (6) results from this
mass dynamics. This stability analysis is based on Eq.
(17a), together with the following equations:

a,=4e—a?, (17b)

§:=—8a, (17¢)

which constitute a complete dynamical system in R3 of
the form X_=F(X) with the vector field
X(7)=(e(7),a(7),g(7))T. This system, hereafter denoted
by S, exhibits a unique fixed point X =X () in which
the vanishing components &(oo)=a(c)=g(o )=0 re-
spectively correspond to the asymptotic values taken by
the positive functions €(7), a(7), and g(7) as 7 reaches
infinity. Because the scaling law g(7)=g(7y)exp
— f :Oa(s)ds, where 7, refers to an initial time, surely

converges towards its asymptotic zero value, S may be
restrained to the nonlinear equations (17a) and (17b),
which are characterized by an exponential decrease of €
on the one hand, and by a parabolic functional depen-
dence between €(7) and a (7) on the other hand. Regard-
ing now the quadratic dependence on a? of Eq. (17b), one
can investigate the two distinct regions located around
the parabola e=a2/4 that correspond to the different
classes of initial data satisfying the inequalities
a’(ry) <4e(ry) and a’(1y) > 4e(7,), respectively. Since e,
is negative, the positive function €(7) always decreases
from &(7;,) towards its stationary value £( « )=0. For ini-
tial data such as a*(7,) > 4€(7,), the time derivative d,a in
Eq. (17b) remains negative, so that the function a(7) de-
creases to zero as 7— co. In the opposite region defined
by a’(1y) <4e(7,), 8,a is positive, and the function a(7)
increases until it crosses the parabola e=a?/4; after-
wards one has 9,a <0, so that a (7) decreases to zero and
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FIG. 1. Parametric plot of the time-dependent function a (7)
vs g(7) as described by Egs. (17) with C =2. For 7,=0, the solid
curve corresponds to the initial datum a (0)=2V¢(0) and joins
the parabola e=a?/4 (dotted line) as 7— . Dashed lines
represent _trajectories integrated from the initial data
a(0)>2Ve(0) and a(0)<2V'e(0). Arrows indicate the flow
direction.

asymptotically behaves like 2V'e(7). In the limit €—0,
trajectories___issued from initial data satisfying
a(ry)=21 e(r,) become close to the curve e=a2/4 fol-
lowing the relation a?—4e=C(da/de)exp[ —7/(2Ve)]
~(C/Ve)exp[—m/(2V'e)], as illustrated in Fig. 1.
These arguments show that the fixed point X ., is stable.
More precisely, integrating numerically Egs. (17) as was
done in Fig. 1 with 7,=0, reveals a very slow conver-
gence of both the functions a (7) and &(7) towards zero
for times 7= 100. This finally endows the fixed point of S
with a nature of logarithmic stability, as it could be
guessed from the behavior a (7)=/(InT), which proves
the stability of the blowup rate (6).
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